Preliminary communication

Organometallic Compounds

XIV^{*}. Formation of novel [4] ferrocenophanes by the acid-catalyzed reaction of 1,1'-bis(α -hydroxy- α -phenylethyl) ferrocene

MASAO HISATOME, SHIKO MINAGAWA and KOJI YAMAKAWA**

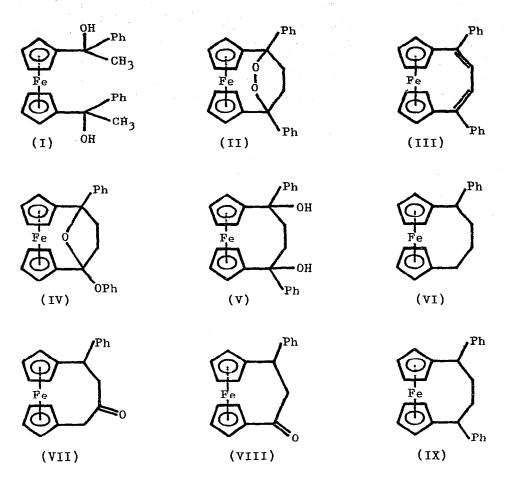
Faculty of Pharmaceutical Sciences, Science University of Tokyo, Shinjuku-ku, Tokyo, 162 (Japan) (Received April 25th, 1973)

SUMMARY

The acid-catalyzed reaction of 1,1'-bis(α -hydroxy- α -phenylethyl) ferrocene gave several [4] ferrocenophanes including a peroxide derivative. Their structures have been confirmed by spectrometric methods and from a study of their reaction behavior.

In a previous communication¹, we reported that the acid-catalyzed reaction of 1,1'-bis(α -hydroxyisopropyl) ferrocene gave [4] ferrocenophanes by intramolecular cyclization. The present communication describes the production of a peroxide derivative and several other novel derivatives of [4] ferrocenophane by treatment of 1,1'-bis(α -hydroxy- α -phenylethyl) ferrocene (I) (m.p. 134–135°) with acid.

The products obtained by vigorous stirring of a benzene solution of (I) (1.000 g)and 7N HCl were separated into a fraction (241 mg) soluble in ethyl acetate, and an insoluble crystalline product (II) (609 mg). Column chromatographic separation of the soluble fraction gave three [4]ferrocenophanes [(III), 49 mg; (IV), 7 mg; and (V), 26 mg] and 30 mg of unidentified products.

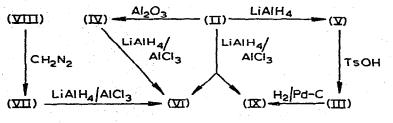

The IR (KBr) and ¹H NMR spectra^{***} of compound (IV) (m.p. 174–174.5°) possess characteristic ether bands at 960–1050 cm⁻⁻¹ (5 peaks) and methylene signals of a typical ABCD system at δ 2.0–2.9 ppm.

Reduction of (IV) with LiAlH₄AlCl₃ gave compound (VI) [m.p. 82.5-83°, δ 1.8-2.8 (6H, m, CH₂), 3.70 ppm (1H, m, CH)], which was identical to the product obtained by reduction of compound (VII) with LiAlH₄AlCl₃. The ferrocenophane (VII)

"All 'H NMR spectra were measured at 100 MHz in CDCl₃ unless otherwise stated.

^{*} For part XIII see ref. 5.

Author to whom correspondence should be addressed.



(m.p. $162.5-163^{\circ}$) was prepared by treating 6-phenyl-8-oxo[3]ferrocenophane (VIII)² with diazomethane. The spectra of compound (V) (m.p. $168-169^{\circ}$) indicated OH bands at 3505 and 3385 cm⁻¹, and a methylene signal at δ 2.62 ppm (4H, s). Compound (III) (m.p. $220.5-221.5^{\circ}$) which had a vinyl proton signal at δ 6.11 ppm (2H, s), was also obtained by dehydration of the diol (V) with *p*-toluenesulfonic acid, and it was converted into compound (IX) [m.p. $155-160^{\circ}$, a mixture of *trans* and *cis* isomers in a 2/1 ratio; *trans*, δ 3.56 ppm (m, CH); and *cis*, δ 3.80 ppm (m, CH) in CS₂] on catalytic reduction. The molecular ion peak was apparent in the mass spectrum of each compound described above.

The insoluble crystalline compound (II) [m.p. $164.5-165.5^{\circ}$, δ 2.64 ppm (4H, s)] had a composition of C₂₆H₂₂O₂Fe according to the elemental analysis and mass spectrum [*m*/*e*: 422, *M*⁺; 406, (*M*-O)⁺; 394, (*M*-C₂H₄)⁺; 390, (*M*-O₂)⁺; 388, (*M*-H₂O₂)⁺]. Treatment of (II) with alumina gave the ether (IV), a rearrangement product. It has been reported³ that the same rearrangement reaction occurred in the thermal decomposition of 9,10-epidioxyanthracene derivatives in alkylbenzene with formation of two ether bonds.

Furthermore, (II) was converted into either (V) or a 1/6 mixture of (VI) and (IX) on reduction with LiAlH₄ or LiAlH₄/AlCl₃, respectively. The reduction product (IX) (m.p. $176-177^{\circ}$) consisted only of *cis* isomer in analogy with the products of the reduction of peroxides of anthracene^{3,4}. The reaction behavior of (II) (Scheme) suggests that the peroxide (II) is initially formed in the present acid-catalyzed reaction and that it is then converted into compounds (III)–(V).

Scheme

REFERENCES

- 1 M. Hisatome and K. Yamakawa, J. Chem. Soc., Chem. Commun., (1973) 199.
- 2 J.W. Huffman and R.L. Asbury, J. Org. Chem., 30 (1965) 3941.
- 3 P.F. Southern and W.A. Waters, J. Chem. Soc., (1960) 4340.
- 4 J. Rigaudy, Pure Appl. Chem., 16 (1968) 169.
- 5 K. Yamakawa and M. Moroe, J. Organometal. Chem., 50 (1973) C43.